
Stability of Two-Inertia System Using Non-Linear Controller:  
Application to Drive-Control System of Electric Vehicle 

 
M. Mubin*, S. Ouchi**, N. Kodani**, N. Mokhtar*, N. Soin* 

*Department of Electrical Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia. 
**Department of Applied Computer Engineering, Tokai University, 1117 Kitakaname, Hiratsuka-shi, Kanagawa, Japan. 

E-mail: marizan@um.edu.my 
 

ABSTRACT 
 
The drive-control system of a vehicle is considered as 
two-inertia system that is the wheel system and the car-
body system. This paper firstly presents the stabilization 
of two-inertia system using a non-linear controller and a 
disturbance observer. This control system is then applied 
to a drive-control system of a vehicle with a disturbance 
observer for estimating the car-body speed. A Lyapunov 
stability theorem is followed to confirm the stability of 
the system. The effectiveness of this control system is 
proved by a satisfactory experimental results. 
 
Keywords: traction control, automatic braking system, 
disturbance observer, Lyapunov function 
 

1. Introduction 
An automobile loses its running stability when it slips 

due to rapid acceleration, deceleration or braking. The 
driving force of the automobile is transmitted by a 
frictional force between the tires and the road surface. 
This frictional force is a function of the car-body’s 
weight and the tire-road surface’s friction coefficient. 
Furthermore, the friction coefficient is a function of the 
following parameters: slip ratio determined by a car-
body speed, a wheel speed and the condition of the road 
surface. Due to variations in this friction coefficient, the 
controlled object treated in this paper is non-linear and 
subject to disturbances and uncertainties. 

Generally, the car-body speed is indispensable 
information for traction control and anti-lock braking 
system (ABS). However, it is difficult to measure the 
absolute car-body speed directly. Thus, the disturbance 
observer is used to estimate it. The observer to estimate 
the unknown state variable has been widely used and 
discussed in [1-4]. 

Our objective is to develop a control system design to 
enhance the stability of the automobiles, especially 
during acceleration, deceleration or braking [3-5]. As to 
date, many researches have been done on this matter. 
However, the traction control problems are still far from 
reaching the final solution and a lot of works such as the 
robust stability for parameter changes must be done. 

 
2. Control System Design of Two-Inertia System 

A two-inertia system as shown in Fig. 1 is considered 
as a controlled object. This system is expressed by the 
following equation. 
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Fig. 1 Block diagram of the controlled object 
 
2.1 Stabilization for Two-Inertia System 

In order to stabilize the controlled object above, the 
performance index is considered as follows: 

),ˆ:(:,ˆ: 22222121 xxxxSyxS ee −==−=   (2) 

where 2x̂  is assumed to be the estimated value of 2x . 
From Eq. (1), the following equation is assumed: 

wBxAx ˆˆˆ 2222 +=& .  (3) 
Next, a Lyapunov function is considered as 

2112 VVV += ,  (4) 
where ( ) ( )0,0:,0: 22221111 >≠=≠= PSPSSVSSSV TT . 
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where ,: 1112 BCBBm −= wwwe −= ˆ: , ,w>γ 01 >R ,

02 >R  ( 21, RR : free parameter). 
Then, from Eq. (5) and (6), the following equation can be 
obtained: 
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is obtained. However, 012 <V&  cannot be obtained 
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because 0, 21 >RR . So, the next disturbance observer is 
considered as an estimation system. 
 
2.2 Disturbance Observer 

A disturbance observer such as )(ˆ ∞→→ tww  is 
designed. From Eq. (1), the controlled object for the 
disturbance observer design is considered as follows: 

wBuBxAx 1112111 ++=& .  (8) 
Next, the following equation is assumed: 

wBuBuBxAx o ˆˆˆ 111112111 +++=& .  (9) 
By subtracting Eq. (8) from (9), Eq. (10) can be obtained. 

,1111111 eoee wBuBxAx ++=&  (10) 
where wwwxxx ee −=−= ˆ:,ˆ: 111 . 
In order to obtain 0→ew , the following Lyapunov 
function is considered: 

e
T
e wwV =3 . (11) 

Here, 0≈w&  is assumed if )(Re)ˆ(Re ww λλ >> . 
Furthermore, put 

( ) ):(:ˆ 1131 GGBkLLxw T
e == , (12) 

3V&  can be expressed as 

( ) ( ) e
TT

e wGBGBwkV 111133 2 ⋅=& . (13) 
When 03 <k , )0(03 ≠< ewV&  can be obtained 
because 011 ≠GB . Then, )(ˆ ∞→→ tww  is obtained. 
The block diagram for the disturbance observer is shown 
in Fig. 2. 
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Fig. 2 Disturbance observer 

 
2.3 Combined System 

The combined system consists of the controlled object 
and the disturbance observer is then considered. From Eq. 
(7) and (13), 
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0<V&  can be obtained. By following the Lyapunov 
stability theorem, the control purpose )(12 ∞→→ tyx  
is obtained. Therefore, the control law to stabilize the 
controlled object can be obtained as follows: 
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The block diagram of the combined system is shown in 
Fig. 3. 
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Fig. 3 Combined Systems 
 
3. Application to Driving System 
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Fig. 4 Vehicle Model 

 
The obtained results from the previous section are 

applied into the driving system of the automobiles. The 
driving system is considered as depicted in Fig. 4. The 
equations of motion of the system can be expressed as 
follows: 

⎩
⎨
⎧

=+=
+=++=

)(,
, 11222

λµτττ
µτµωω

fba
bvavbba

itt

mm

&

&& , (14) 

where 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−=−=

==−=
=−=−=

),max(/)(:,/1:
/1:),/(:,/:

/1:,/:,/:

11

222

vvTa
TbMrWbMCa
JbJWrbJBa

ft

ftm

m

ωωλ

 

The Thirteenth International Symposium on Artificial Life and Robotics 2008(AROB 13th ’08),
B-Con Plaza, Beppu, Oita, Japan, January 31-February 2, 2008

©ISAROB 2008 424



All parameters used in Eq. (14) are defined in Table 1. 
The block diagram shown in Fig. 5 can be constructed by 
using Eq. (14). 
 

Table 1 Wheel and vehicle parameters 

τ  Tractive torque ω  Angular speed of the 
wheel 

M  Vehicle mass g  Acceleration of gravity 
C  Friction of vehicle v  Car-body speed 
W  Vehicle weight u  Torque input 

J  Moment of inertia 
of the wheel fT  Torque system 

parameter 
r  Wheel radius   
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Fig. 5 Block diagram of the vehicle system 

 
From Eq. (14), the equation of motion of the driving 
system can be expressed as follows 
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Since µ  can not be measured, the disturbance observer is 
used to estimate µ  and the estimation value of the car 
body speed v̂  is calculated from µ̂ . Using Eq. (12), the 
following equation can be expressed: 

).(ˆ 23 me bkLL ⋅== ωµ  
From the discussion above, the control law can be 
obtained as follows: 
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The block diagram of the control system can be drawn as 
in Fig. 6. 
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Fig. 6 Control System Design 

 
Refer to Fig. 6, the structure of the control system can 

be divided into two conditions that is 0≠S  and 0≈S . 
0≠S is the condition in which slip does not occur, the 

time variation for the estimated value of car-body speed 
v̂  and the vehicle speed ω  are small. Therefore, it can be 
considered that 0,ˆ →ω&&v . This system is known as τ  
control system. On the other hand, for the condition of 

0≈S , 0λλ =  is obtained at v≥ω , where 0λ  is the 
reference value of slip ratio. Meanwhile, at v<ω , 

0λλ −=  is obtained where full control can be done. This 
control system is called λ  control system. 
 
4. Experimental Results 

In order to check the feasibility of the designed 
controller, it is implemented into a specially modified 
experimental device as shown in Fig. 7. The device 
consists of two rotating wheels, which represent the 
vehicle wheel and the car-body respectively as labeled. 

 

 
Fig. 7 Experimental Device 

 
Parameters of the experimental device are shown in 

Table 5 while Table 6 shows the controller gains that 
have been used in this control system. A different value 
of gains are used for different road conditions with slip 
and without slip. 

The experimental results for the wheel accelerating on 
the slippery road under non-control are shown in Fig. 8. 
From Fig. 8(a) and (b), it is shown that when an 
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approximately 0.01 Nm torque is given, the wheel starts 
rotating. However, the car-body is not moving and this 
indicates that the large slip occurs.  

Meanwhile, from Fig. 8(c) and (d), it can be observed 
that after the wheel starts accelerating, the slip ratio goes 
up to 1=λ  for 6 seconds before it decreases to about 

2.0=λ . However, as the speed of the wheel increases, 
the slip ratio seems to be increased. 
 

Table 2 Experimental device parameters 
P Motor power [W] 20 
M Vehicle mass [kg] 0.06 
C Friction of the vehicle [Nms] 0.001 
B Friction of the wheel [Nms] 2.5x10-5 
W Vehicle weight [N] 0.588 
J Moment of inertia for the wheel [kgm2] 4.0x10-5 
r Wheel radius [m] 0.03 
Tf Time constant of the torque system [sec] 0.1 

iτ  Torque reference (with slip) [Nm]  0.009 

iτ  Torque reference (without slip) [Nm]  0.005 
 

Table 3 Controller gains of the experimental device 
 With slip Without slip 

R1 3.75x10-3 3.75x10-3 
R2 2.66x10-5 2.66x10-5 

F1R -8.33x10-7 -8.33x10-7 
F2R 2.5x10-5 2.5x10-5 
k1R -6.8x10-3 -6.8x10-3 
k2R -0.01 -10-5 
k3 -9.75x10-2 -9.75x10-2 
L 43 43 

0λ  0.2 0.2 
γ  0.2 0.2 

 

   
           (a) Speed response              (b) Torque response 

   
       (c) Friction coefficient, µ                 (d) Slip ratio, λ 

Fig. 8 Experimental results for non-control case 
Two separated experiments have been carried out since 

it is difficult to run the experiment for both conditions of 
normal road and slippery road at the same time. The 
experimental results for the control case under the 
normal road condition are shown in Fig. 9(i), while the 
experimental results under the slippery road condition 
are given in Fig. 9(ii). From Fig. 9, it is shown that the 
wheel speed can be controlled at the slip ratio of 
approximately 2.0=λ  when an input torque of about 
0.01 Nm is given. 

Meanwhile, from Fig. 9(e), it can be seen that 
switching does not occur when the wheel accelerating on 
the normal road. In this case, τ  control system is taking 
place. However, switching occurs in Fig. 9(ii-e) shows 
that the λ  control system is operating when the wheel is 
accelerating on the slippery road. 

 

 
(a) Speed response 

 
(b) Torque response 

 
(c) Friction coefficient, µ 

 
(d) Slip ratio, λ 

 
(e) Switching function 

             (i) Normal road             (ii) Slippery road 
Fig. 9 Experimental results for control case 

 
5. Conclusion 

From the experimental results, it has been proved that 
by using the proposed control system, an appropriate 
torque can be generated even though the road condition 
changes from the normal road to the slippery road or vice 
versa. 
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